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Abstract. The reaction of tricarbonyl (4-methoxy-1-methylcyclohexadfenyl)iron 
hexafluorophosphate (1) with the keto ester nucleophile 5 to give complexes 6 and 7, 
and conversion of 6 in eight steps, via the enone 8a, to a D-homosteroid 11 is 
described. 

The synthesis of steroids remains an active area of research,l particularly 

useful for the testing of new synthetic methodology and strategy. We have previously 

described2 approaches to D-homoaromatic steroids which can function as precursors for 

the natural products.3 Those experiments were based on the ability of the dienyliron 

complex 1 to react with stabilized enolate nucleophiles at C(l), thus behaving as a 

synthetic equivalent of the 4-methylcyclohexenone y-cation (2). However, this 

approach has the disadvantage that a lengthy sequence is required to convert the 

aromatic D ring to the correct five-membered ring. Therefore, we have examined a 

convergent A + CD + B strategy which utilizes a CD fragment more closely resembling 

the proper steroid subunit, described herein. 

Ideally, the required ACD intermediate could be obtained by coupling a trans 

hydrindanone nucleophile such as 3 with complex 1, but this is expected to be 

problematic owing to the tendency of molecules such as 3 to form a mixture of cis and - 

trans ring junction isomers. 4 Consequently, we elected to use the configurationally 

stable trans-decalone keto ester 5, prepared in six steps from the Wieland Miescher 

ketone (4) as shown in Scheme 1.5 
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Peagents: (a) NaBH,,, CeC13'6H20, HeOH, O'C, 15 min. (b) LIA1H4, AlCl3 
(1:1.5), Et20, O'C, 5h. (c) HeOCH2C1, Pr$NEt, CH2C12, reflux, Bh. (d) 3 BH3 - 

THF, O'C, 2h; then 2N NaOH, 30% H202, ZO'C, Ih. (e)PCC, CH2C12, ZO'C, Zh. 

(f) (He0)2C0, NaH, PhH, 60°C, 3h. 

The intermediate 1 has not previously been used in reaction with keto esters as 

complex as 5, so we considered that the success of this reaction would be of 

considerable interest in paving the way for future synthetic design. Treatment of 

the sodium enolate of 5 with the dienyl salt 1 (THF, O°C) gave 60 - 65% yield of a 

mixture of four diastereomeric complexes, two of which were major and in 

approximately equimolar proportion. When the potassium enolate of 5 was used one 

pair of diastereomers predominated in the mixture (ratio 6:7 = 75:25). This pair 

was assigned the structure 6, the minor pai‘ bo~ng 7, on the basis of the following 

QMOH OHOM p0t.i QMOM 
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6 lOI Or-cop, 7 lol e-C0,CH3 

Ibl /J CO&H, - Ibl fl -C02CH, 

BeageOta: (a) NaH or KOBut, THF, 609, 2b; cool Lo O'C and add complex 1, 

0.5h. (b) Me3N0, PhH, 25'C, sonicate, 4h. (c)oxalic acid, HeOH, H20, 25'C, 
Ih. (d) Me/,NOAc, HPIPA, IOO°C. 16h. (e) CH2-CHCH2CH2HgBr, CuBr, THF, -40°C, 
lh. (f) NaBH4, MeOH. O'C, 10 min. (g) Ac20. py. ZS'C, 16h. (h) Pdc12, CuCl, 
Oz. DMF, 25'C, 24h. (1) p-TsOH, CH2C12, reflux, Z&h. 

observations. The major isomer 6a crystallized from the reaction mixture and was 

obtained pure (m.p. 145 -147'C). This compound was readily converted to the single 

enone intermediate 8a by demetallation, enol ether hydrolysis and decarboxylation 

(Scheme 2). The liquors from crystallization were converted to a mixture of two 

diastereomeric enones 8a and 8b. Since epimerisation is possible at pro- C(9) 

(Steroid numbering) the cyclohexenone substituent is now equatorial, so the 

stereochemistry at this center is fixed and these compounds are epimeric only at 

C(10). Examination of the NMR spectra of 8a and 8b confirmed the stereochemical 
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assignments, since the enone S-hydrogen in 8a (6 = 7.0 ppm, J = 10.3 Hz) is found at 

considerably lower field than that for 8b (6 = 6.8 ppm, J = 10.3 Hz) the ci -hydrogens 

being at similar chemical shift (5.84 ppm for 8a, 5.88 ppm for 8b). This is exactly 

the pattern observed for several analogous compounds we have previously prepared and 

characterized by X-ray crystallography.2*6 

In this way, enone 8a having the desired stereochemistry was obtained as the 

predominant product. This represents the first observation of diastereoselectivity 

during the addition of keto ester enolates to dienyl-Fe(C0)3 complexes.7 The enone 

8a was converted to D-homo-steroid derivative 11 by a five step sequence (Scheme 2). 

Reaction of 8a with 4_butenylcuprate, followed by selective ketone reduction and 

acetylation gave 9 which was converted to diketone 10 by Wacker oxidation. a Acid- 

catalyzed cyclization of 10 under anhydrous conditions afforded the 7-acetyl-D- 

homosteroid 11, having unconjugated ketone ( vmax 1705 cm-'). While the position of 

the double bond in 11 is uncertain we have assigned then8 structure based on the 

following considerations. The 8,9-double bond is endocyclic to both the B and C 

rings and is therefore in its thermodynamically preferred arrangement. 9 Throughout 

the entire series of compounds 5 - 11 the position of the C/D angular methyl in the 

NMR spectrum remains constant at ca 6 0.7 - 0.8 p.p.m. and appears not to be affected 

by a neighboring C=C double bond ze conversion of 4 to 5). On the other hand, the 

A/B angular methyl experiences a large upfield shift on going from 10 ( 6 1.02) to 11 

( 6 0.84), suggesting neighboring functionality in the latter. 10 

This approach promises a highly convergent synthesis of steroids having a 

variety of 7-substituents, since the acetyl group may be converted to , e.g., acetoxy 

using Baeyer-Villiger reaction or acetylamino using Beckmann rearrangement. We are 

currently examining these aspects, as well as the use of keto ester 3 in a similar 

reaction sequence. 
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